互联网技术 / 互联网资讯 / 营销 · 2022年10月24日 0

AI赛事在启蒙新一代年轻人

每每提到“AI开发者”,大多数人想到的可能是来自互联网大厂的“程序猿”们,他们身居算法工程师、数据工程师等高光岗位,有着名校博士乃至博士后的傲人学历,并且拿着动辄百万的年薪。

正如大家所看到的,人工智能的第三次浪潮已经持续了一段时间,逐渐从象牙塔走进了社会的角角落落。可在大多数人的认知里,AI仍然有着相当远的距离,仍然是部分高知分子研究的产物,仍然是一本普通人触碰不到的“天书”。

但现实中正在发生的一些事情,俨然超出了我们的预想。

埃隆·马斯克为特斯拉招聘AI人才时曾直言:“博士学位绝对不是必需的,我不在乎你是否高中毕业。”不同于许多人对学历和经历的痴迷,马斯克正在寻找那些对人工智能有“深刻理解”的人。

不只是特斯拉的不拘一格,在游离于大多数人视线外的赛场上,一群20岁上下的少年刚刚经历了一场在AI世界的“奇幻漂流”,诠释着他们对人工智能的理解。

01 像看地图一样看新闻

正在读大四的罗运是武汉大学地理信息科学专业的本科生,他与AI的机缘开始于年初的新冠疫情。

寒假回到家乡的罗运,刚刚过了几天可以赖床的生活,就被班级群里的讨论绷紧了神经。原来在他们离校几天后,武汉就因为新冠疫情封了城。罗运想要了解那座熟悉的城市到底发生了什么,努力在社交媒体和资讯平台上搜索一切和武汉相关的新闻,却发现网上充斥着太多的谣言和假消息,想要进一步查找学校周边的情况,只能在社交媒体上找到寥寥几条无法确证的内容。

由于地理信息科学属于计算机和地理的交叉学科,除了和地理有关的课程,罗运还自学了计算机编程,并且经常在国外的慕课平台上看一些人工智能的课程和案例。苦于查找武汉当地新闻的罗运萌生了一个大胆的想法:能不能将地图和新闻资讯进行结合,像看地图一样查看当地的新闻?

AI赛事在启蒙新一代年轻人

罗运将自己的想法和参加大学生创新创业比赛时的两个小伙伴进行了沟通,三人一拍即合,决定打造一款以地图为导向的时空新闻交互网页应用。

团队首先确认了他们想要抓取的比较权威且有公信度的新闻源网站,然后使用Scrapy异步爬虫框架对新闻进行智能提取,在百度飞桨提供的深度学习框架的支持下,基于文心ERNIE进行命名实体识别,再联合百度地图等的地理编码服务,利用PostGIS计算空间数据的尺度、跨度,进行分词和词性提取后,运用TF-IDF、LDA等算法进行文本的向量化、词频分析、主题分析、相似度分析,最后采用飞桨的GRU4Rec模型根据用户行为序列与兴趣区域推荐新闻。

经过四个多月的开发测试后,将地图和新闻结合的网页应用正式上线。当罗运将鼠标点向武昌火车站的时候,网页上弹出了长江网的最新消息,内容是武汉市解除离汉离鄂通道管控,涉及武昌站、武汉站、汉口站等火车站。看着自己的成果,罗运比任何一刻都更想念这熟悉的城市、熟悉的学校。

不善言谈的他,很快和小伙伴定好了下一步的目标:目前他们正在为这款应用添加新的功能,逐步增加情感趋势面分析、舆论导向分析等功能,方便普通用户在地图上找到不同时段新闻的同时,帮助有关部门从新闻和民众的情绪中挖掘社会的热点和痛点。

02 告别垃圾分类的烦恼

距离武汉700多公里的杭州市,杭州电子科技大学信息工程学院计算机专业的揭金民也在进行一场人工智能之旅。

家在杭州的揭金民看到妈妈每天都要花不少的时间对厨余垃圾、可回收垃圾、有害垃圾等进行分类,可由于垃圾的种类繁多,常常出现分类错误的情况。社区只好派驻志愿者在各个小区监督,基本就是居民刚刚扔完垃圾后,志愿者需要重新在垃圾桶里扒一遍。

有志愿者守在垃圾桶旁边检查,大家反而有了“侥幸心理”——毕竟就算分错了类也会有志愿者重新分类。看着志愿者每天在臭气熏天的垃圾桶中满头大汗地分拣,揭金民心里有些不是滋味。有没有什么办法能让妈妈不再为垃圾分类头疼,又能帮助这些志愿者?

作为一名计算机专业的本科生,揭金民想要用人工智能来改变现状:倘若可以用计算机视觉技术对垃圾进行分类识别,居民们就能更轻松地完成垃圾分类,准确性也会提升,志愿者也不用再忍受恶臭翻垃圾桶。

AI赛事在启蒙新一代年轻人

揭金民拉上了两位软件工程专业的同学,以三人小分队的形式践行自己心中的想法。揭金民负责硬件设计,他要做一个三层结构的智能垃圾桶,第一层进行垃圾的识别,第二层对垃圾进行处理,第三层存储不同类别的垃圾。另外两个小伙伴分别负责系统后台和前端的开发工作。

敲定了分工后,必须解决的一个核心问题是打造垃圾分类的算法模型。如果自己写一套图像识别算法,目前的水平和积累跟不上,会拖延产品成型的时间、错过了最佳的市场。好在团队找到了百度的EasyDL平台,作为一个零门槛的AI开发平台,EasyDL上有着丰富的算法模型,包括图像分类、人脸识别等等,算法模型终于有了“谱”。揭金民和小伙伴如释重负,立刻把精力放在了硬件和系统开发上。

在长达一年的时间里,揭金民团队收集整理了近2万张垃圾照片,其中包含大量袋装垃圾,在EasyDL训练后的识别准确率高达96%。硬件设计组装完成后,揭金民将智能垃圾桶放在自己家小区进行试点,目前已经协助用户完成了近1000kg垃圾的分类,异常识别率控制在5%以内。

“这只是第一步。我们想推出家庭版的智能分类垃圾桶,还想尝试推出一种‘代扔垃圾’的服务……”细心的揭金民已经想好了未来的种种可能。

03 解放高空中的补漆工

在国内风能资源最为丰富的西北地区,一座座风车如森林般矗立,源源不断地将风能转化为电能。

然而风机的维护却成了一项让人头疼的难题,西安电子科技大学的黄耀辉了解到风机的维护需要工人们绑着绳索爬到高空中,提着漆桶进行补漆维护作业。

小时候她觉得那是一件有冒险精神的事情,长大后才知道冒险的背后是可怕的风险:高空补漆通常处于二级、三级乃至特级高处作业,二级高处作业坠落死亡率就高达40% ;同时《工业卫生与职业病》中指出,油漆工人中7.2%出现了白细胞数减少, 18.3%患有沙眼,22.8%心电图异常,17.8%视力下降……

作为西安电子科技大学创新创业实验班的学生,黄耀辉在心中一直藏着“解放”高空补漆工的想法,并在课余时间自学了人工智能相关的课程。一次偶然的机会,黄耀辉在学校的微信群中看到同学们在讨论飞桨,在好奇心的驱动下走进了深度学习的世界。

AI赛事在启蒙新一代年轻人

与深度学习结缘之时,黄耀辉也认识了一个同校的好伙伴:左谊。那时左谊正在团队中做一个无人机的项目,他和黄耀辉沟通后,大家迅速萌生了一个新的主意:既然飞桨上有那么多成