互联网资讯 / 人工智能 · 2024年2月24日 0

黄仁勋:英伟达的AI算力,已经以折扣销售

身穿皮夹克的黄仁勋,站在蓝色冲浪板上,摆了几个冲浪的姿势。

这不是美国「网红节」VIDCon,而是美国知名数据平台 Snowflake 的开发者大会上的一景。

当地时间 6 月 26 日,英伟达创始人黄仁勋和 Snowflake 公司 CEO FRank SlootMan 就「如何把生成式 AI 带给企业用户」展开探讨。主持人则是前 GReylock 的 GP,现在是投资机构 Conviction 的创始人。

在会上,相较于「东道主」FRank 职业经理人式的老成持重,「皮衣教父」一如既往地语出惊人,不仅称双方的合作是「要相爱,不要战斗」(We aRe LOVeRs,not FighteRs),更开玩笑说,为 Snowflake 提供的经过训练的模型,相当于给客户「打了 1 折」。

黄仁勋:英伟达的AI算力,已经以折扣销售

Talking Points:

大语言模型+企业专属数据库=针对特定问题的 AI 应用;

以前是 Data going to WoRk,现在是 WoRk going to Data,让计算去到数据所在之地,避免数据孤岛;

英伟达提供的预训练模型,已经是花费数千万美元、在英伟达 AI 工厂中训练出来的,所以在 Snowflake 上调用计算引擎已经「打了 0.5 折」;

软件 3.0 时代,基于模型、数据库,企业能够在几天内搭建自己的专属应用;

未来企业能够生产许多智能代理,并运行它们;

对于企业来说,真正的难题是混合结构的、非结构化的数据,如何被调动。这或许能够带来商业模式的更新。

以下为双方对话主要内容,经极客公园整理编辑:

01

谈合作:把最好的计算引擎,带给最有价值的数据

FRank:

NVIDIA 目前在历史上发挥着重要的作用。对于我们来说,能够带来数据和大型企业的关系。我们需要启用这项技术,以及让整个服务堆栈来有效地使用它。我不想使用「天作之合」来形容,但是对于一个门外汉,是一个很好的机会,进入到这扇机会的大门里。

黄仁勋:

我们是 lOVeRs,而不是对手。我们要把世界上最好的计算引擎带到世界上最有价值的数据。回想过去,我已经工作了很长时间,但是还没有那么老。FRank,你更老一些(笑)。

最近,由于众所周知的原因,数据是巨大的,数据是宝贵的。它必须是安全的。移动数据很困难,数据的引力真实存在。因此,对我们来说,把我们的计算引擎带到 Snowflake 上要容易得多。我们的伙伴关系是加速 Snowflake,但它也是关于将人工智能带到 Snowflake。

最核心的是,数据+人工智能算法+计算引擎的组合,我们的伙伴关系将所有这三件事结合在一起。令人难以置信的有价值的数据,令人难以置信的伟大的人工智能,令人难以置信的伟大的计算引擎。

我们可以一起做的事情,是帮助客户使用他们的专有数据,并用它来编写 AI 应用程序。你知道,这里的重大突破是,你第一次可以开发一个大型语言模型。你把它放在你的数据前面,然后你与你的数据交谈,就像你与一个人交谈一样,而这些数据将被增强到一个大型语言模型中。

大型语言模型加知识库的组合等于一个人工智能应用。这一点很简单,一个大型的语言模型将任何数据知识库变成一个应用程序。

想想人们所写的一切惊人的应用程序。它的核心始终是一些有价值的数据。现在你有一个查询引擎通用查询引擎在前面,它超级智能,你可以让它回应你,但你也可以把它连接到一个代理,这是 LangchAIn 和向量数据库带来的突破。将数据和大语言模型叠加的突破性的东西正在到处发生,每个人都想做。而 FRank 和我将帮助大家做到这一点。

02

软件 3.0:建立 AI 应用,解决一个特定问题

主持人:

作为投资者来看这种变化,软件 1.0 是非常确定的代码,由工程师按照功能写出来;软件 2.0 是用仔细收集的标记的训练数据优化一个神经网络。

你们在帮助人们撬动软件 3.0,这套基础模型本身有令人难以置信的能力,但它们仍然需要与企业数据和自定义数据集合作。只是针对它们去开发那些应用程序要便宜得多。

对于那些深入关注这个领域的人来说有一个问题,基础模型是非常泛化,它可以做所有事情吗?为什么我们需要自定义模型和企业数据呢?

FRank:

所以我们有非常泛化的模型,可以做诗,处理《了不起的盖茨比》的做摘要,做数学问题。

但是在商业中,我们不需要这些,我们需要的是一个 Copilot,在一个非常狭窄,但是非常复杂的数据集上获得非凡的洞见。

我们需要了解商业模式和商业动态。这样的计算上不需要那么昂贵,因为一个模型并不需要在一百万件事情上接受训练,只需要知道非常少的、但很深入的主题。

举个例子。我是 InstacaRt 的董事会成员,我们一个大客户,像 DooRDash 和所有其他企业常面临的问题是,他们不断增加营销费用,来了一个客户,客户下了一个订单,客户要么不回来,要么 90 天后回来,这非常不稳定。他们把这称为流失客户。

这是复杂问题的分析,因为客户不回来的原因可能有很多。人们想找到这些问题的答案,它在数据中,不在一般的互联网中,而且可以通过人工智能找出来。这就是可能产生巨大价值的例子。

黄仁勋:英伟达的AI算力,已经以折扣销售

主持人:

这些模型应该如何与企业数据互动?

黄仁勋:

我们的战略和产品是各种尺寸、最先进的预训练模型,有时你需要创建一个非常大的预训练模型,以便它可以产生 ProMpt,来教更小的模型。

而较小的模型几乎可以在任何设备运行,也许延迟非常低。然而它的泛化能力并不高,zeRo shot(零样本学习)能力可能更有限。

因此,你可能有几种不同类型不同大小的模型,但在每一种情况下,你必须做监督的微调,你必须做 RLHF(人类反馈的强化学习),以便它与你的目标和原则保持一致,你需要用矢量数据库之类的东西来增强它,所以所有这些都汇集在一个平台上。我们有技能、知识和基本平台,帮助他们创建自己的人工智能,然后将其与 Snowflake 中的数据连接起来。

现在,每个企业客户的目标不应该是思考我如何建立一个大型的语言模型,他们的目标应该是,我如何建立一个人工智能应用程序来解决特定的问题?那个应用可能需要 17 个问题来做 ProMpt,最终得出正确的答案。然后你可能会说,我想写一个程序,它可能是一个 SQL 程序,可能是一个 Python 程序,这样我就可以在未来自动做这个。

你还是要引导这个人工智能,让他最终能给你正确的答案。但在那之后,你可以创建一个应用程序,可以作为一个代理(Agent)24/7 不间断地运行,寻找相关情况,并提前向你汇报。所以我们的工作就是帮助客户建立这些人工智能的应用,这些应用是有安全护栏的、具体的、定制的。

最终,我们在未来都将成为智能制造商,当然雇用员工,但我们将创建一大堆代理,它们可以用 Lang ChAIn 类似的东西来创建,连接模型、知识库、其他 API,在云中部署,并将其连接到所有的 Snowflake 数据。

你可以规模化地操作这些 AI,并不断地完善这些 AI。因此,我们每个人都将制造 AI、运行 AI 工厂。我们将把基础设施放在 Snowflake 的数据库,客户可以在那里使用他们的数据,训练和开发他们的模型,操作他们的 AI,因此,Snowflake 将是你的数据存储库和银行。

有了自己的数据金矿,所有人都将在 Snowflake 上运行 AI 工厂。这是目标。

03

「核弹」虽贵,直接用模型相当于「打 1 折」

黄仁勋:

我们在 NVIDIA 建立了有五个 AI 工厂,其中四个是世界前 500 名的超级计算机,另一个正在上线。我们使用这些超级计算机来做预训练模型。因此,当你在 Snowflake 中使用我们的 NeMo AI 基础服务时,你将得到一个最先进的预训练模型,已经有几千万美元的费用投入其中,更不用说研发投入了。所以它是预先训练好的。

然后有一大堆其他的模型围绕着它,这些模型用于微调、RLHF。所有这些模型的训练成本都要高得多。

因此,现在你已经将预训练模型适应于你的功能,适应于你的护栏,优化你希望它具有的技能或功能类型,用你的数据增强。因此,这将是一个更具成本效益的方法。

更重要的是,在几天内,而不是几个月。你可以在 Snowflake 开发与你的数据连接的人工智能应用程序。

你应该能够在未来快速建立人工智能应用程序。

因为我们现在看到它正在实时发生。已经有一些应用能够让你和数据聊天,比如 ChatPDF。

主持人:

是的,在软件 3.0 时代,95% 的培训费用已经由别人承担了。

黄仁勋:

(笑)是的,95% 的折扣,我无法想象一个更好的交易。

主持人:

这是真正的动力,作为投资人,我看到在分析、自动化、法律等领域的非常年轻的公司,他们的应用已经在六个月或更短的时间内实现了真正的商业价值。其中一部分原因是他们从这些预先训练好的模型开始,这对企业来说是一个巨大的机会。

黄仁勋:

每家公司都会有数百个,甚至 1000 个人工智能应用程序,只是与你公司的各种数据相连。所以,我们所有人都必须善于构建这些东西。

04

原来是数据找业务,现在是业务找数据

主持人:

我一直从大企业参与者听到的一个问题是,我们必须去投资人工智能,我们需要一个新的堆栈(Stack)吗?应该如何考虑与我们现有的数据堆栈相连?

FRank:

我认为它在不断发展。模型们正逐渐变得更简洁、安全、更好地被管理。所以,我们没有一个真正明确的观点,这就是每个人都会使用的参考架构?有些人将有一些中央服务的设置。微软有 AzuRe 中的人工智能版本,它们的很多客户正在与 AzuRe 进行互动