文|智能相对论
作者|陈选滨
在上海临港新片区,一座规模宏大且颇具科技感的建筑拔地而起。
这便是由商汤科技打造的人工智能计算中心(AIDC),同时也是亚洲最大的超算中心之一,建成投入运营后,算力可达到每秒3740 Petaflops(1 Petaflops为每秒千万亿次浮点运算)。
这是一个什么样的概念?
目前,我国顶级人工智能计算中心“鹏城实验室”的算力为1000 Petaflops,已是世界人工智能算力500排行中蝉联两年首位的绝对领军者。
如今,算力的上限再度迎来突破,一个人工智能“大算力”时代似乎正在迎面而来。
那么,站在产业发展的角度来看,这意味着什么?
众所周知,人工智能有三驾马车,即“大数据、算法、算力”。其中,算力之间的差距是最不容易快速追赶的,但同时也是目前产业发展最欠缺的能力。
在2021东湖国际人工智能高峰论坛上,清华大学郑纬民院士就直言,算力的落后严重制约了我国人工智能领域的发展。
若要打破这个制约,关键需要有大算力基础设施建设,也就是人工智能计算中心,把底层的基础打牢。
目前,我国已有20多个城市正在规划或建设人工智能计算中心。在这一片热潮之中,人工智能产业与其他产业又将迎来什么样的变革?与传统的数据中心(IDC)相比,AIDC的出现,将伴随着怎样的本质区别?
在此,我们不妨就AIDC的全国落地来谈一谈人工智能“大算力”时代。
IDC与AIDC:从“仓库”到“工厂”的跨越
今天,人工智能产业正在加速走向更大规模化的发展阶段,无论是科研创新还是产业应用,对算力的支持都提出了更高的要求。
在科研创新层面,以通用预大模型为例,随着人工智能技术深入推进,处理的问题参数越来越多,比如GPT3为1750亿个参数,Google Switch ransformer达到1.6万亿个参数。对此,郑纬民院士判断,差不多每3、4个月需要的计算机算力就得翻一倍。
由此,在今天的技术进程上,算力很大程度决定了人工智能技术创新的上限。若是没有足够的算力支持,很多通用大模型根本无法完成预训练,推动技术应用。
在产业应用层面,以智慧城市为例,在我们的城市生活中,存在许许多多的细分场景以及长尾应用,大到智慧交通、智慧环保、智慧能源等,小到对一辆共享单车、一个井盖、一段水域的监测等等,都离不开人工智能技术应用。
随着人工智能技术在产业端的普遍应用,计算无处不在,而对算力的需求也随之增长。根据艾媒咨询数据显示,2020年人工智能带动相关产业的规模就已经超过5700亿元,预计未来5年年复合增长率超过27%,带动相关产业规模预计更将超16000亿元。
在万亿级的产业背后,我们很难去估量未来产业发展对算力的需求量。
但,重视算力“缺口”,积极建设大算力基础设施,特别是推动AIDC落地,夯实人工智能基础,确是一条看得见也做得到的路径。
对于商汤科技一类的AI企业而言,这一路径或许看得更早,也更清晰。
从成立之初,商汤科技就已经在构思相关的规划。直到2020年,耗时仅168天,商汤AIDC便以以前所未有的速度落地上海临港,成为商汤科技的又一张AI王牌——基于AIDC的支持,商汤科技可以将SenseCore商汤AI大装置的技术能力开放给学术界和产业界的合作伙伴,提供更全面、深度的AI-as-a-Service,大幅提高AI生产力。
值得注意的是,从这一表现来看,AIDC与传统的IDC是有本质区别的。
尽管,从产业应用的角度来说,IDC与AIDC都是面向数字时代的基础设施,提供着最基础的底层支持,但侧重点实际上又各有不同。
传统的IDC是一个海量数据库,负责数据的存储、分发等功能,在简易的理解中,可将其定位为生产流程上的“仓库”,主要负责生产资料(即数据)的管理。
但,AIDC则完全不同,其落地的主要能力在于提供大规模数据处理及高性能计算能力。对比传统IDC而言,其侧重点更偏向于生产力(即算力)的提升,定位也更接近于生产流程中的“工厂”。
如何理解这里的“工厂”?
从商汤AIDC的定位来看,或许更好理解——在商汤打造的的软硬一体的超大型通用AI基础设施“SenseCore商汤AI大装置”中,AIDC属于计算基础设施,整合了AI芯片及AI传感器等,主要通过提供强大的算力支持,来支撑对海量数据和算法模型的分析、训练和推理。
简单来说,AIDC的产业价值更多体现在算力的提升以及对数据的进阶处理能力,而非传统IDC纯粹的存储或分发功能,也就相当于多了一道工厂的职能及生产程序。
AIDC,如何打开AIaaS模式的新局面?
很显然,从传统IDC到AIDC的建设,其背后的产业趋势与格局都面临着新的变化。而这一种趋势变化,聚焦到AIDC的落地,正呈现为三种不同场景的产业价值。
在技术研发层面,传统的科研范式正在被颠覆。
人工智能自诞生以来,就不断与传统科学技术交叉应用,碰撞出新的火花。如今,在大数据、大算力的支持下,更有颠覆传统科研范式的可能。
目前,在生物学领域,这种颠覆有目共睹。
谷歌的AlphaFold团队一改传统的蛋白质结构预测策略,通过使用蛋白质数据库中17万多个不同的蛋白质结构,以及几百个TB级别的包含未知结构的蛋白序列数据库对AlphaFold进行训练,由此不断迭代,最终使得AlphaFold AI网络获取了基于氨基酸序列精确预测蛋白结构的能力。
而在这个过程中,算力是非常关键的一个支持。毕竟面向17万多个不同的蛋白质结构以及几百个TB级别的蛋白质序列数据库,若是没有大算力支持,很难展开训练。
也正是有了这种大算力的支持,在相关领域的科研创新无须再按照传统路径进行展开,完全可以在新算法的基础下把所有的可能性“跑”一遍,来寻求最优解。
这种科研新范式,随着AIDC的全国落地也将成为未来的共识。目前,国家蛋白质科学中心(上海)等科研机构及高校已经与商汤AIDC达成合作意向,有意借助商汤AIDC提供大规模弹性算力对传统科研范式进行创新颠覆。
据了解,商汤AIDC可以提供大规模弹性算力,可完成10000亿参数模型的完整训练。在这种大算力的支持下,未来的科研创新也将拥有更多的可能性。
在产业应用层面,企业“重复造轮子”的问题正在被缓解。
除了在科研层面的交叉应用之外,人工智能的另一面便是与不同的产业进行融合应用。在这个过程中,人工智能愈发普遍,相关的应用和能力正在成为产业发展的标配。
那么,如何源源不断地为传统产业提供人工智能支持,也就成为了当前面临且需要解决的关键问题。就犹如今天的工厂不再需要自建发电厂发电生产一样,AIDC的出现在很大程度上来说,所要解决的就是传统产业自建人工智能基础设施的问题。
比方说,基于AIDC,商汤就有基础将SenseCore商汤AI大装置的能力作为通用的AI-as-a-Service提供给各大企业客户,帮助他们轻松生产出符合自身需求的人工智能模型,无须过多的资本投入、学习成本投入或是“重复造轮子”。
由此,传统产业应用AI的门槛也就大大降低,让AI得以成为更多企业发展的助力。
目前,商汤AIDC已经接入国家(上海)新型互联网交换中心,是上海的重点新基建项目,进阶成为“国家队”的一员,也就意味着其背后必要承担更大的产业责任与普惠价值。
对此,我们可以看到商汤AIDC在算力成本和安全性上所摆出的“高低手”,一方面压低算力成本,通过算法优化来提高AIDC的效率为企业提供更低成本的算力,把产业路径走宽;另一方面抬高安全性,采用独立物理机房、隐私计算、多租户能力等提高AIDC的安全性,把产业路径走稳。
在产业生态层面,产业链路逐步完善,上下协同形成驱动。
至今,人工智能已经发展出一条相对完善的产业链条,以高性能计算能力为核心的AIDC更是其中不可欠缺的重要一环。随着AIDC的落地,整个人工智能产业链也将得到进一步完善,由此形成上下游的协同驱动。
比如,AIDC的建设往往需要海量的算力芯片支持,由此国内兴起的AIDC建设热潮便能为国产芯片提供大规模应用的产业环境,从市场需求端拉动国产芯片的发展,为整个国产芯片市场构建一个良性发展的循环体系。
根据了解,商汤AIDC到2024年所有服务器全部到位时,国产化硬件的比例将超过50%。不难发现,这将是一个庞大的场景需求,对于国产硬件厂商而言,越来越多的本土AIDC落地,市场的空间也就越大,由此形成的需求拉动也就越显著。
同时,AIDC也备受科研机构和高校院所青睐。目前,商汤AIDC已复旦大学、上海交通大学、浙江大学、上海科技大学、上海海洋大学等高校及科研机构达成合作意向,双方将依托海量的算力资源与集群调度优势、以及完整的AI算法工具链打造出一个满足AI人才培养、AI技术研发等产业需求的大平台。
可见,作为AI基础设施,AIDC的落地对于整个产业发展而言,存在多方面利好的驱动优势,是完善人工智能产业链的关键一环。
AIDC的未来:走向融合
在当前阶段,AIDC的价值是看得见的,对科研创新、产业应用以及生态完善都具备非常重要的补足能力。
如此关键的一个基础设施,AIDC的未来又将如何发展?
从目前相关的行业趋势来看,《智能相对论》认为,AIDC在未来或将会走向融合,表现在三个方向。
其一,融“网&rd