互联网技术 / 互联网资讯 · 2023年11月3日 0

工业大数据的技术与应用深入解析

工业大数据,是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后服务、运维、报废或回收再制造等整个产品全生命周期各个环节产生的各类数据及相关技术和应用的总称。工业大数据是智能制造的核心,以为基础,用技术引领工业生产方式的变革,拉动工业经济的创新发展。

详述工业大数据的技术与应用

一、工业大数据定义

工业大数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后服务、运维、报废或回收再制造等整个产品全生命周期各个环节产生的各类数据及相关技术和应用的总称。其以产品数据为核心,极大延展了传统工业数据的范围,同时还包括工业大数据相关技术和应用。工业大数据的主要来源有如下3类。

1、生产经营相关业务数据

生产经营相关业务数据主要来自于传统企业信息化范围,存储在企业信息系统内部,包括传统工业设计和制造类软件、企业资源计划(ERP)、产品生命周期管理(P L M)、供应链管理(S CM)、客户关系管理(CRM)和环境管理系统(EMS)等。这些企业信息系统已累积了大量的产品研发数据、生产性数据、经营性数据、客户信息数据、物流供应数据及环境数据。此类数据是工业领域传统的数据资产,在移动互联网等新技术应用环境下正在逐步扩大范围。

2、设备物联数据

设备物联数据主要指工业生产设备和目标产品在物联网运行模式下,实时产生收集的涵盖操作和运行情况、工况状态、环境参数等体现设备和产品运行状态的数据。此类数据是工业大数据新的、增长最快的来源。狭义的工业大数据即指该类数据,即工业设备和产品快速产生且存在时间序列差异的大量数据。

3、外部数据

外部数据指与工业企业生产活动和产品相关的企业外部互联网来源数据,例如,评价企业环境绩效的环境法规、预测产品市场的宏观社会经济数据等。工业大数据技术是使工业大数据中蕴含的价值得以挖掘和展现的一系列技术与方法,包括数据规划、采集、预处理、存储、分析挖掘、可视化和智能控制等。工业大数据应用则是对特定的工业大数据集,集成应用工业大数据系列技术与方法,获得有价值信息的过程。工业大数据技术的研究与突破,其本质目标就是从复杂的数据集中发现新的模式与知识,挖掘得到有价值的新信息,从而促进制造型企业的产品创新,提升经营水平和生产运作效率以及拓展新型商业模式。

二、工业大数据特征

工业大数据除具有一般大数据的特征(数据容量大、多样、快速和价值密度低)外,还具有时序性、强关联性、准确性、闭环性等特征。

数据容量大(voluMe):数据的大小决定所考虑的数据的价值和潜在的信息。工业数据体量比较大,大量机器设备的高频数据和互联网数据持续涌入,大型工业企业的数据集将达到PB级甚至EB级别。

多样(vaRiety):指数据类型的多样性和来源广泛。工业数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等各个环节,并且结构复杂,既有结构化和半结构化的传感数据,也有非结构化数据。

快速(velocITy):指获得和处理数据的速度。工业数据处理速度需求多样,生产现场级要求分析时限达到毫秒级,管理与决策应用需要支持交互式或批量数据分析。

价值密度低(value):工业大数据更强调用户价值驱动和数据本身的可用性,包括:提升创新能力和生产经营效率及促进个性化定制、服务化转型等智能制造新模式变革。

时序性(sequence):工业大数据具有较强的时序性,如订单、设备状态数据等。

强关联性(stRong-Relevance):一方面,产品生命周期同一阶段的数据具有强关联性,如产品零部件组成、工况、设备状态、维修情况、零部件补充采购等;另一方面,产品生命周期的研发设计、生产、服务等不同环节的数据之间需要进行关联。

准确性(accuRacy):主要指数据的真实性、完整性和可靠性,更加关注数据质量以及处理、分析技术和方法的可靠性。对数据分析的置信度要求较高,仅依靠统计相关性分析不足以支撑故障诊断、预测预警等工业应用,需要将物理模型与数据模型结合,挖掘因果关系。

闭环性(closed-loop):包括产品全生命周期横向过程中数据链条的封闭和关联以及智能制造纵向数据采集和处理过程中,需要支撑状态感知、分析、反馈、控制等闭环场景下的动态持续调整和优化。

由于以上特征,工业大数据作为大数据的一个应用行业,在具有广阔应用前景的同时,对传统的数据管理技术与数据分析技术也提出了很大的挑战。

三、工业大数据架构

工业大数据架构包含3个维度:生命周期与价值流、企业纵向层和IT价值链。

在生命周期与价值流层,按照工业大数据的应用领域,又可分成产品生产阶段开始前的产品研发与设计、产品交付前的生产与供应链管理及产品交付后的运维与服务管理3个领域。

在企业纵向层,按照数据采集方式与应用层级又可分成信息物理系统层、企业管理信息系统层及平台互联系统层。

在IT价值链层,又可分成业务架构、信息系统架构及IT技术架构3个层次,其中信息系统架构又可分为应用架构及信息架构。

生命周期与价值流维度

工业大数据架构中的生命周期与价值流维度涵盖了整个产品生命周期的各阶段,即研发与设计、生产、物流、销售、运维与服务5个阶段,其中,生产、物流和销售可进一步归类于生产与供应链领域,则生命周期与价值流维度包含了3个领域:研发与设计、生产与供应链及运维与服务3个领域。

01.研发与设计领域

研发数据通过研发人员在研发设计过程中不断积累而成,其来源于产品生命周期各个环节,包括:用户需求大数据、研发知识大数据、产品重用大数据、研发协同大数据等,具有跨产品和跨行业、种类繁多的特性。

实现客户参与的个性化产品定制设计企业通过互联网平台能够收集用户的个性化产品需求、产品的客户交互和交易数据。挖掘和分析这些客户动态数据,能帮助客户参与产品的需求分析和产品设计等活动中,实现定制化设计,再依托柔性化的生产流程,就能为用户生产出量身定做的产品。

实现基于大数据的模拟仿真设计传统生产企业在测试、验证环节需要生产出实物来评测其性能等指标,成本随测试次数的增加而不断提升。利用虚拟仿真技术,可以实现对原有研发设计环节过程的模拟、分析、评估、验证和优化,从而减少工程更改量,优化生产工艺,降低成本和能耗。

实现基于大数据的个性化定制设计自动化传统企业产品种类、式样不多,可采用手工设计产品模型、生产样品,再进行量产的生产模式,但面对个性化、小批量生产的要求,传统模式将导致产品生产周期过长、成本过高。通过积累大量的产品设计模型数据,分析设计数据之间的关联,借助大数据技术及其他辅助设计工具可实现个性化定制设计及模型生成的自动化。

促进研发资源集成共享和创新协同设计企业通过建设和完善研发设计知识库,促进数字化图纸、标准零部件库等设计数据在企业内部以及供应链上下游企业间的资源共享和创新协同,提升企业跨区域研发资源统筹管理和产业链协同设计能力。提升企业管理利用全球研发资源能力,优化重组研发流程,提高研发效率。

培育研发新模式基于设计资源的社会化共享和参与,企业能够立足自身研发需求开展众创、众包等研发新模式,提升企业利用社会化创新和资金资源能力。

02.生产与供应链领域

生产大数据不仅包括产品生产制造过程中采集的产品生产信息、订单信息、设备信息、控制信息、物料信息、人员工作排程,还包括企业内部管理信息流、资金流、产品生产上下游的供应商及客户管理等相关辅助生产管理的信息,生产数据的采集依托于企业已有资源管理、制造执行、工控管理、供应链管理、供应商管理、客户管理、商务管理等信息系统。

实现生产过程实时监控与管理及生产设备预测性维护,提升生产过程及设备管理水平,优化生产流程,并提升产品质量。现代化工业制造生产线安装有数以千计的小型传感器,探测生产设备的工作状态,如温度、压力、热能、振动和噪声等,利用这些数据可实现生产过程实时监控、设备故障诊断与预测、能耗分析、质量事故分析等。此外,还可将生产制造各个环节的数据整合集聚,对生产过程建立虚拟模型,仿真并优化生产流程。

实现个性化定制规模生产,推动现代化生产体系的建立。通过产品全生命周期内数据流转的自动化及对制造生产全过程的自动化控制和智能化控制,将促进信息共享、系统整合和业务协同,提高精准制造、高端制造、敏捷制造的能力,实现个性化定制规模生产,加速智能车间、智能工厂等现代化生产体系建立,实现智能生产。

实现网络化协同制造及制造业共享经济。通过,进行生产资源在企业内或企业间的整合优化,实现企业内部的纵向协同制造或企业间的横向协同制造。通过,进行创新资源、生产能力、库存等生产资源的共享,实现制造业共享经济。

优化工业供应链。射频识别(RFID)等电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和

成本的大幅下降。跟踪产品库存和销售价格,而且准确地预测全球不同区域的需求,从而运用数据分析得到更好的决策,优化供应链。

实现需求预测,以便更好地安排进货、生产,当需求下降时,可追溯问题原因,并解决问题。

实现客户画像与精准营销以及客户行为分析,可扩展客源,提升营销成功率及原有客户的满意度及忠诚度。

03.运维与服务领域

运维与服务领域的数据来源有很多,主要包括:在客户允许的情