GPT等AI大模型震撼来袭,基于RPA的超级自动化仍是最佳落地载体
对话弘玑CPO贾岿,深入了解国产RPA厂商对AI大模型的探索与实践
文/王吉伟
关于RPA已死的说法,在中国RPA元年(2019年)投资机构疯狂抢项目之时就已经有了。
说它会死的,一般会认为RPA是一种过时的技术,一种打补丁的技术,一种不稳定的技术。在很多人眼里,依赖UI抓取实现的自动化,最终都会被基于API接口的集成自动化所替代。
现在已经过去5年,RPA不但没有死,还进化出了智能自动化和超级自动化。
没错,RPA没死是因为当代RPA都是基于AI构建的,几乎所有主流厂商都在推出RPA产品之前先一步进行AI的研发。
现在采用超自动化架构的RPA集成了NLP、OCR、低代码、流程挖掘、chatbot等几乎所有先进AI技术和工具,并且还在通过UI和API集成更多的技术以为客户提供更全面的端到端自动化解决方案。
当然,说RPA已死也是有道理的,因为没有融合AI技术的RPA早已经死了。
可谓生也AI,死也AI。
每隔一段时间,当RPA技术发展遇到瓶颈或者新技术会对其造成冲击时,就会有看衰RPA的声音出现,并再次提及RPA已死。
现在,以GPT为代表的AI大模型(LLM,Large Language Model)来了,ChatGPT及Midjourney等基于LLM的杀手级应用对各行各业都造成了巨大的冲击,由不得大家不去考虑LLM对各种软件系统的影响。
于是,人们又开始探讨RPA的未来归宿。
起初就连RPA厂商也会为之恐慌,毕竟LLM都是巨头大厂才能玩得起的,有了AI大模型,主打UI自动化的RPA是否还有存在的必要?RPA技术的发展是不是就到此为止了?AI大模型会不会取代RPA?
扩展阅读:基于AI构建的当代RPA,在生成式AI影响下的生命周期还有多长?
但通过一定的了解、探索与实践之后,厂商们很快就发现LLM将为RPA带来的巨大变革与全新机会。于是,国内外RPA厂商都在步调一致地积极引入LLM。
目前国外引入GPT的厂商已经有十数家,国内也有多家厂商引入了GPT、文心一言等大模型,未来国内各个发布大模型的厂商都将是RPA的模型供应商。
那么,目前都有哪些国内RPA厂商引入了LLM?GPT等AI大模型又会为RPA带来什么样的变革?大模型能够为RPA厂商带来哪些机会?
本文,王吉伟频道就跟大家聊聊这些。
国内RPA厂商的GPT探索
RPA在GPT上探索与尝试,先是由国外RPA厂商开启的。
ChatGPT上线于去年11月30日,到了今年1月,智能自动化厂商NICE就率先宣布了与ChatGPT的技术集成。此后Automation Anywhere、UiPath、三星SDS、Appian、SAP、Pega 、Salesforce、微软(Power Automate)等多家厂商都官宣或者发布了GPT插件,并在博客或视频平台上线了相关教程与视频。
保守估计,国外市场引入GPT的RPA厂商已经不下20家。
在国外厂商的引领之下,国内也有很多厂商陆续引入与集成AI大模型。
近期国内也有不少厂商,发布了RPA与GPT结合的demo视频。比如在这个周一,通过内部独家接触,王吉伟频道就看到了被Gartner评测国内RPA产品力第一的弘玑Cyclone所发布的9个RPA与GPT结合的demo。
其中三个demo,王吉伟频道印象非常深刻。
第一个是GPT与RPA结合的大众点评商家智能助手,原来需要多步操作的复杂工作流程,现在只需一个自然语言口令启动便可快速执行。
第二个是GPT结合RPA实现周报自动书写和发送,GPT通过分析RPA自动获取的项目日报和项目管理系统中的信息,通过与用户多轮对话生成具有实时数据支持的精确项目周报。
第三个是GPT结合RPA结合事实资料自动生成Word和PPT,RPA提供真实信息数据来源有效避免ChatGPT凭空编造内容,几秒完成重复繁琐的资料收集、整理、生成定制化文案与PPT的工作。
弘玑这次发布的demo,侧重GPT与RPA各种能力的有机融合,包括环境感知、数据获取、 数据处理、数据搬运、内容生成、智能决策、信息系统与应用的自动化操作等。
看完这些demo,可以深刻感受到基于LLM的AIGC与RPA深度结合所带来巨大技术变革。
而从厂商们在LLM方面的各种动作上,也能感受到整个RPA行业AI大模型融合趋势已经奔流不息。
既然聊到RPA引入AI大模型,顺便也说说大家关注的如何引入大模型的问题。
在LLM技术的引入与研发方面,不管厂商们推出何种形式的产品,目前应用LLM一般有三种方式:
第一种是直接调用API。厂商们会根据需要直接调用GPT、文心一言等国内外模型的API,也是最简单的集成生成式AI的方式,很多企业的软件系统都可以快速以这种方式引入生成式AI。
第二种是私有化部署+模型微调。把模型厂商开放的模型部署到本地或企业云后,将其优化为一个预训练的面向企业所在领域的大模型,利用 prompt(提示词) 的方式去引导模型生成领域场景化的内容。由于数据安全的需求,目前大型企业都在用这种方式引入模型。
第三种是面向特有技术或者业务模式的原生模型研究,在RPA领域这样的模型一般是面向automation的原生模型。除了引入外部AI大模型之外,目前很多厂商都已经在自有模型方面做了相应的投入与研发。同时因为当代RPA是与AI融合的产品,厂商们也在持续对相关的AI架构、模型等进行研发。
需要说明的是,因为不同厂商对业务流程、产品理念、技术趋势等的不同理解所造成的风格迥异的自有原生模型,也是其核心竞争力之一。
AI大模型的应用,再次证明当代RPA与AI技术连接与融合的紧密性。当然,随着更多AI厂商引入ChatGPT等生成式AI,RPA产品也开启新的AI大模型变革之路。
LLM重新定义RPA
上面介绍的RPA厂商应用AI大模型的三种方式,来自于王吉伟频道与弘玑Cyclone CPO贾岿博士的交流。
贾岿博士在硅谷工作了二十余年,在微软、亚马逊、思科、UiPath都担任过重要职位。基于其对硅谷科技发展以及AI技术的深入了解,他对LLM如何影响RPA有着独到的见解。
在贾岿博士看来,RPA与GPT的融合并不是简单叠加,而是一种深刻的变革。
大家知道,让RPA机器人取代人去稳定操控PC桌面的难度很高。RPA 要处理的事情比Office应用操作复杂得很多,它面向整个桌面上各种各样的APP,会遇到各种各样的干扰,是一个非常复杂的操作过程。
目前的RPA产品已经非常成熟,但在体验上仍会出现各种各样的问题。要真正达到像使用office一样丝滑地使用RPA,还有相当的距离。
但随着GPT这类多模态AI技术的引入,RPA之前所遇到的很多问题都将被解决。GPT 等AI大模型和现有的RPA 技术的模态进行重组,在强化学习、多重决策、虚拟人等技术的加持之下,RPA 在智能方面开始从感知智能进入初步的认知智能。
RPA会对人的意图有真正的理解,然后帮助用户做一些决策,并在执行任务时产生越来越多的预生成算法类推荐指导,让用户可以更简单地通过自然语言交互进行RPA开发。
因此融合LLM技术的下一代 RPA ,在用户体验上会有一个质的飞跃,RPA将会变成真正意义上的数字员工。
以上说法过于学术和技术,更简单的理解是,现在的RPA 像一个加了几个基本传感器数字手指,GPT的接入则让RPA多了一个头脑。
RPA与GPT相结合,相当于把“手(RPA)”“脑(GPT带来的内容生成/意图理解/智能对话/决策)”“眼(OCR/CV)”“耳/嘴(chat对话)”各种能力进行有机结合,自然能够为广大组织带来更智能的RPA数字员工。
事实上,AI大模型的引入为RPA带来的远不止多了一个大脑,更是带来了深度的产品变革。
自RPA诞生开始,厂商们无时无刻不在探索如何通过更好的技术去实现屏幕抓取。但屏幕抓取、视觉识别如何发展,却始终脱离不了拖拉拽或者搭积木的产品形态。
引入GPT之后,用户就可以通过自然语言交互驱动RPA的流程创建,以及生成各种各样的结构化数据。这意味着以后用RPA开发自动化应用程序可能再也不需要拖拉拽或者写脚本了,也意味着