互联网资讯 / 人工智能 · 2024年2月22日 0

中国OpenAI:200天内PPT造模与落地应用的挑战

2022年11月30日,美国OpenAI公司研发的一款ChatGPT的人工智能(AI)聊天机器人产品破土而出。

OpenAI可能也没想到,原本ChatGPT只是向消费者展现GPT能力的产品,却能在过去200天里引发从投资人到创业者、从独角兽到大厂、从业界到学术界、从经济学家到科技部部长的广泛关注。与此同时,谷歌、微软、阿里等超30家科技大厂、创业公司、机构相继下场,一时间讨论四起,全球展开了一场 AI 大模型“军备赛”。

《中国人工智能大模型地图研究报告》显示,截至今年5月28日,中国10亿参数规模以上的大模型已发布79个。而美国、中国占全球已发布大模型总量的80%以上。

当下行业内达成的一个基本共识是,ChatGPT的出现标志着通用 AI 的起点和强 AI 的拐点,是 AI 领域科技创新和成果应用的一次重大突破,也是新时代数字化的“发电厂”。

利用ChatGPT,以SaaS(软件即服务)服务的方式接入到干行百业,所有数字化系统和各个行业都值得用ChatGPT重做一遍。更多人未来期望ChatGPT使企业数字化业务流程更快、更高效、更智能。

不过,相比OpenAI和微软公布包括摩根士丹利、StRIPe等公司使用ChatGPT的商业案例,国内“百模大战”中却出现了一个怪现象:

技术和产品能力似乎都很强,但一到客户手里却出现各种bug,公布对话大模型的公司都在谈自身的技术能力强、场景化方案,部分还公布合作信息,但都极少在公开场合谈商业落地案过程。

一位行业人士向钛媒体app透露,某家上市公司在一次电话沟通会上吐槽,其使用某互联网大厂研发的千亿 AI 大模型产品,尽管声称实现3分钟制作PPT、全球大厂中第一个同类型级别产品,但该上市公司最终将大模型接入公司系统时,却出现“一连接就死机”的情况。

近日在上海的一场AI大模型产业应用论坛上,一位 AI 大模型创业者甚至直言,过去几个月内发布的十几个大语言模型都大同小异,现状是全球只有OpenAI能够达到通用 AI 的商业化,且有绝大部分用户的市场。除此以外,国内 AI 大语言模型远没有达到可商用化程度。

PPT式大模型能做千行百业商业应用时却漏洞百出“在我看来,ChatGPT这波AI 2.0能否真正发展起来,取决于是否有商业模式,是否有客户来买单。GPT这类大模型无论怎样去训练,如果没有应用、没有场景、没有买单、没有商业模式,它就不可能成功。”6月2日上海临港的一场圆桌上,云网一体化云计算上市公司首都在线执行总裁姚巍直言,AI 大模型的商业化对于行业发展极为重要。

从客户方面,企业也急需生成式 AI 带来业务变革。

创业者服务平台GoDaddy日前对全美1003家小型企业的调查数据显示,ChatGPT以70%的应用率成为美国小型企业应用最多的生成式AI产品;38%的受访者,在过去几个月里尝试过生成式AI;营销、内容创作、商业建议是企业应用生成式AI最多的3个用例;75%受访者非常满意生成式AI在业务中的表现。

随着海外大模型快速更迭OpenAI推出每月20美元的付费试点订阅服务ChatGPT Plus,以及ChatGPT/GPT-4 向开发者开放API且价格下探,全面带动了大模型在应用层面持续落地。

与此同时,国内众多大模型也陆续发布,基于2000亿美元生成式 AI 前景市场、50万亿数字经济产业规模,AI 大模型有望在中国得到最大范围的商业化开发。

创新工场董事长兼CEO李开复曾表示,AI 2.0时代进入提升生产力的应用井喷期,存在巨大的平台式机会,而且将是中国在AI领域的第一次参与平台角逐的机会。

具体来说,结合大模型相关企业研发信息以及券商研究报告,还有微软最近对外公布的应用场景,钛媒体app以下梳理出ChatGPT类产品在七大行业里面主要的商业化应用:

企业运营:日常办公文档材料撰写整理;营销对话机器人,市场分析,销售策略咨询;法律文书起草、案例分析、法律条文梳理;人力资源简历筛选,预招聘,员工培训。

教育:协助评估学生学习情况,为职业规划提供建议;针对学生情况以及兴趣定制化学习内容;论文初稿搭建及论文审核;帮助低收入国家/家庭通过GPT获得平等的教育资源。

游戏/媒体:定制化游戏,动态生成NPC互动,自定义剧情,开放式结局;出海文案内容生成,语言翻译及辅助广告投放和运营;数字虚拟人直播;游戏平台代码重构;AI自动生成副本。

零售/电商:舆情、投诉、突发事件监测及分析;品牌营销内容撰写及投放;自动化库存管理;自动生成或完成SKU类别选择、数量和价格分配;客户购物趋势分析及洞察。

金融/保险:个人金融理财顾问;贷款信息摘要及初始批复;识别并检测欺诈活动风险;客服中心分析及内容洞察;保险理赔处理及分析;投资者报告/研究报告总结。

制造业/汽车:生产计划、供应链计划状态查询;产线预测性维保辅助;产品质量分析与溯源;自动驾驶全场景模拟训练及虚拟汽车助手;线上购车品牌、配置对比分析。

生命科学:研发阶段靶点发现及产品成药性;医学文献内容检索,重点摘要提取,相关法规整理;医药代表培训及知识库建立;分诊导诊助理、诊疗助理、术后护理及复建辅助。

不仅如此,ChatGPT大模型以及生成式 AI 技术还将在图片、视频、数字人等领域的各种复杂场景中落地,利用海量的数据资源和算法实现商业化应用与迭代更新。

OpenAI曾做过一份研究估算,美国19%的岗位,至少50%的工作内容会被影响;80%的岗位至少有10%的工作内容被或多或少地波及,数学家、会计师和审计师、新闻分析师、法律秘书和行政助理、报税员等职业最容易受到GPT大模型影响。

不过,上述内容更多属于“纸上谈兵”,用PPT畅想 AI 前沿技术将场景智能化升级。最终在落地的时候,参数规模“竞赛”很是热闹,但真正走到规模化产业部署的还寥寥无几,后续的模型修正和迭代进化也进展缓慢。

不论是数据出现“一本正经胡说八道”,还是中英语言翻译不准、算力不够、价格昂贵等因素,AI 全面辅助购物、金融与制造业的观点是片面的,提交到客户应用时并非易事,可能会出现矛盾和问题。

例如,在云知声发布会现场演示中,当询问医疗领域专业问题“治疗闭角型青光眼的治疗药物应选择什么?”的时候,ChatGPT回答的是阿托品。钛媒体app也尝试了这个问题的回复,基本上是错误信息或不属于国内药品法规下能买到的药物,而正确答案则是毛果芸香碱。

同时,由于大模型背后大量采用英文数据语料,而非中文互联网数据,因此会出现语言不通的现象。比如输入“鱼香肉丝”,会出现一个被切成丝的活鱼图片这种“尴尬”情况,所以在商业化过程中会出现一些问题。

一家金融领域企业高管此前告诉钛媒体app,由于ChatGPT在数学计算方面能力较差、一些信息无法实时更新,因此国内大模型产品在金融领域效果并不佳,尤其会出现汇率和贷款信息错误,而且会产生信息不对称情况。

今年4月 AI 公司第四范式举行的发布会上,一位银行公司代表提到,在金融行业因为信息不对称可能会导致更高息的信贷产品或者存款利率,但其实就算信息都给你,也可能做出的选择并不是最优的。

“我们是做金融的,面向公众服务,我传递的任何信息必须是准确的。”上述代表认为,大模型在企业落地时面临挑战主要就三点:内容可信风险、数据安全风险、落地成本高昂。

在制造业中,内容问题可能会产生更严重的影响。因为人工的瑕疵与错误会被严格限制,一些高精尖工艺需要分毫不差,一旦 AI 系统出现错误,可能会引发一场事故。

清华大学惠妍讲席教授、AI 公司衔远科技创始人周伯文对钛媒体app表示,现在像ChatGPT这样的大模型进展很快,但问题在于它可能一本正经的“胡说八道”。尤其在专业领域,外行看它像内行,内行看它像外行。同时,内容的原作者视其剽窃,但普通用户则视其在创造,实际它尚不具备原创性的思想。

此外,语言问题也需要得到重视。

据WiRed报道,今年至少有15篇aRXiv研究论文探讨了大模型的多语言性。但研究人员发现,包括ChatGPT在内的 AI 系统更擅长将其他语言翻译成英语,而很难将英语重写成其他语言,尤其是韩语、非拉丁文字等。不仅如此,ChatGPT在回答事实性问题或总结非英语复杂文本方面的表现要差得多,更有可能是伪造信息。

今年5月举行的美国国会听证会上,OpenAI CEO山姆·奥特曼(SaM AltMan)表示,ChatGPT研发团队正采取措施来缩小语言差距。他希望与政府和其他组织合作获取数据集,以增强 ChatGPT 的语言技能和回答正确内容。

商业案例极少谈及部分大模型落地遇阻有行业人士向钛媒体app直言,目前GPT已经实现了真正的智能化,下一步的成功点就是在大模型的产品化、商业化、工程化和应用场景化当中。

根据灼识咨询的报告,2022年,全球AI市场的规模达1997亿美元,复合年增长率为29.4%,预计2027年将达到5624亿美元,2022年至2027年的复合年增长率为23.0%。

“今天 AI 技术能力和5个月之前有天翻地覆的差别。我们把一个能力更强的产品放在系统平台上,至于销售和服务,从商业角度来说,今天才刚刚开始,从接触新技术到最终(采购)是需要时间的。”云知声创始人、CEO黄伟对钛媒体app坦言,大模型才刚刚发布,尚未有规模化商业案例。

商业案例极少谈及,是这轮国内大模型热潮至今的一个重要特点。即便是 AI 行业巨头商汤,最近仅最新披露10+大模型客户这一数字,钛媒体app了解到其中大部分并非是垂直头部企业。

5月30日,生成式AI(AIGC)公司出门问问向港交所提交招股书。

报告显示,2022年出门问问总营收5亿元,前五大客户基本上是AIoT(物联网)领