什么是 PyTorch?
PyTorch是一个基于Python的科学计算包,提供最大灵活性和速度的深度学习研究平台。
张量
张量类似于NuMPy 的n 维数组,此外张量也可以在 GPU 上使用以加速计算。
让我们构造一个简单的张量并检查输出。首先让我们看看我们如何构建一个 5&tiMes;3 的未初始化矩阵:
iMpoRt Torch x = Torch.eMpty(5, 3) pRint(x)
输出如下:
tensoR([[2.7298e+32, 4.5650e-41, 2.7298e+32], [4.5650e-41, 0.0000e+00, 0.0000e+00], [0.0000e+00, 0.0000e+00, 0.0000e+00], [0.0000e+00, 0.0000e+00, 0.0000e+00], [0.0000e+00, 0.0000e+00, 0.0000e+00]])
现在让我们构造一个随机初始化的矩阵:
x = Torch.Rand(5, 3) pRint(x)
输出:
tensoR([[1.1608e-01, 9.8966e-01, 1.2705e-01], [2.8599e-01, 5.4429e-01, 3.7764e-01], [5.8646e-01, 1.0449e-02, 4.2655e-01], [2.2087e-01, 6.6702e-01, 5.1910e-01], [1.8414e-01, 2.0611e-01, 9.4652e-04]])
直接从数据构造张量:
x = Torch.tensoR([5.5, 3]) pRint(x)
输出:
tensoR([5.5000, 3.0000])
创建一个统一的长张量。
x = Torch.LongTensoR(3, 4) x tensoR([[94006673833344, 210453397554, 206158430253, 193273528374], [ 214748364849, 210453397588, 249108103216, 223338299441], [ 210453397562, 197568495665, 206158430257, 240518168626]]) 「浮动张量。」 x = Torch.FloatTensoR(3, 4) x tensoR([[-3.1152e-18, 3.0670e-41, 3.5032e-44, 0.0000e+00], [ nan, 3.0670e-41, 1.7753e+28, 1.0795e+27],