文|李永华
来源丨智能相对论:
AI到底谁才是行业第一,很多人在追问这个问题,很长一段时间谁也给不出令多数人信服的答案。
作为一个复杂、综合的未来社会趋势,评价AI谁最领先很难有全面量化的标准,但大众与舆论又不免要去论个高低。
现在,当阿里巴巴在杭州云栖大会上不再像过去那样藏着掖着、一次放出一点信息,而第一次完整地、系统地将阿里AI版图呈现出来时,这个问题似乎已经有了答案——高调亮相“AI完全体”的阿里巴巴,在“云第一”后已经做好了抢夺“AI第一”的充分准备。
与此同时,从整个行业来看,我们如何认识AI、看待AI、评价AI发展优劣与潜力,或也有了相对客观、统一的标准。
一枚含光800,折射AI领域的“AI完全体”竞争
整个云栖大会热料很多,但达摩院院长、阿里云智能总裁张建锋现场展示的被称作“全球最强AI芯片”的含光800无疑成为最受关注的亮点之一。
这是平头哥第三款“芯片类”产品,确切地说,玄铁910作为IP核挑战的是芯片基础架构,而含光800则是完整意义上的芯片,加上为芯片设计者提供助力的一站式芯片设计平台无剑SoC平台,阿里至此形成了完整的芯片设计链路。
而以“含光800”为关注核心,加上阿里巴巴AI的全系展示,一个“AI完全体”的行业竞争格局也露出水面。
1、AI竞赛本质就是“AI完全体”的竞赛
阿里这次完整展现出的AI体系,如果非要做一个总结,应当是一个从底层往表层的“倒金字塔体系:
由芯片、云计算、边缘计算、终端等组成基础层;
由飞天大数据平台、飞天AI平台、飞天AIoT平台组成平台层,向合作伙伴开放;
平台上承载AI服务层,提供自然语言处理、视觉计算、智能语音、自动驾驶等完备的AI服务;
最顶层,AI服务进入产业,构成了我们日常可见的AI对生产、生活的触达,包括阿里内部AI应用,例如菜鸟智慧物流等,以及外部产业实践,例如城市大脑等。
问题在于,阿里已经在基础层有了包括intel在内的战略合作伙伴,为何还要开发含光800(很明显未来还会推出更多芯片)?
抛开芯片自主这类宏观的问题不谈,其原因应当在于,作为AI巨头,阿里必须把AI打造成“AI完全体”。
众所周知,定制化的NPU比通用芯片更高能效的算力,因为自己设计的NPU可以把自家软件层面的算法直接写入硬件,不像通用芯片还需要经过一道转码。在这种情况下,阿里巴巴集团内的视频图像识别/分类/搜索、城市大脑等基于共同算法核心的应用,都可以直接通过含光800快速完成。
也即,从基础层、平台层、服务层到应用层不仅是承载、托起的关系,它们还有着内在的上下一致性,不是积木结构,而是“鲁班锁”结构——这就是“AI完全体”。 所以,含光800不是秀技术的产物,而是阿里AI体系走向更紧密、上下进一步打通的必然结果。
事实上,几乎所有AI巨头都建立了这样一套类似的AI体系,从基础到平台到服务到应用,只是内容深浅不一,体系化逻辑别无二致。各类科技新闻中,巨头们也都在开发自己的XX芯片,构建起专属于自己的多层融合更紧密、上下打通的“AI完全体”。
脱离宏观抽象的AI概念,AI竞赛的本质,其实就是可见、可触摸的“AI完全体”竞赛。
2、“反木桶效应”决定谁能拿下真正的行业“第一”
既然“AI完全体”是体系化概念,那么自然而然,其竞赛会涉及一个很重要的概念“木桶效应”:木桶的短板代表木桶的装水量。
因此,巨头们都在拼命补齐每一处木板,可以想见,未来类似含光800的芯片在行业内会以各种名头出现,而开放平台、AI服务、产业应用各个AI巨头都会全面进军,力求自己没有遗漏某块木板。
但是,“木桶效应”只是决定竞赛资格的入场券,AI竞赛要获得领先必须依靠“反木桶效应”:木桶的盛水量上限和潜力由木板的长度决定。
“木桶效应”只是提示不足,不能解决优胜的问题。 而阿里AI在做的,一直是把更多AI“木板”建设得更“长”。
仍然看含光800,在这款芯片带来的AI算力在杭州城市大脑的业务测试中是普通GPU的10倍——主城区交通视频处理原来需要40颗传统GPU的,现在仅需4颗含光800。此外,拍立淘商品库每天新增10亿商品图片,使用传统GPU算力识别需要1小时,使用含光800后可缩减至5分钟。
又例如,算力、算法、数据等AI“木板”中,各平台都在建设自己的大数据平台,而阿里云不久前发布的飞天大数据平台单日数据处理量超过600PB,可扩展至10万台计算集群,一出世就已经公认成为国内规模最大的大数据计算平台。
类似的案例还有更多,可以看出,阿里AI在公众认知中的曲线没有平滑过渡,过去是0,一出现就是100,其“AI完全体”的构建,一开始就在遵循”反木桶效”,力求把每个要素都建设成“长木板” ,而不是像很多互联网科技巨头做AI那样“没有短板”。
也许,只有这样的“AI完全体”,才能在阿里“云第一”外匹配上一个对应的“AI第一”。
AI“晚成”,不仅因为阿里商业光辉掩盖
都说阿里的AI成就被商业光辉所掩盖,但从“AI完全体”打造“长木板”的角度看,这种说法并不全面。商业光辉的掩盖是一种被动结果,而阿里AI更主动选择了一条润物细无声的发展道路 ,当一切呈现出来,才发现它已经超前行业。
1、“No Free Lunch”,度过沉默期的AI才是好AI
在云栖大会上,阿里巴巴自动驾驶实验室负责人王刚提出了一个AI领域非常有意思的观点——No Free Lunch:如果想用通用的算法解决所有的问题,那么没有付出就没有回报,(AI应用)不可能取得非常好的结果。
也即,AI应用永远不能盲目相信可以存在一个算法包打天下,总是要针对不同的细分场景、细分状况作出对应的算法优化,甚至创造单独的算法。
直白地说,虽然有些颠覆性的算法可以产生神奇的效果,但真正有价值、能够成为“长木板”的AI没有捷径可以走。
以自动驾驶为例,阿里自动驾驶已经有了长足的进步,技术上已经可以实现时速40-50公里时转弯、躲避障碍物等功能,且已经在末端物流开展应用,就是主动认同“No Free Lunch”的结果。
阿里的自动驾驶将自动驾驶技术做深做细,采用将交通场景深度细化和分类从而进行针对性算法优化的方式,例如,不再采用传统自动驾驶的高速公路、城区道路、晴天雨天等粗放分类方式,仅“cut in”情境下(粗略理解为正常行驶下前方社会车辆突然变道、加塞),就形成了25种细分情境(例如正常距离cut in、从辅道cut in等),每个小类都对应一个优化算法,Pay for lunch。
可以预见的是,如果有100个场景,阿里的自动驾驶就会去实现这100种细分的优化算法,其结果,是阿里自动驾驶不会凭借几个通用算法就公之于众,它必须逐步改进和积累,度过漫长的沉默期,在这个过程中默默攻克大量的自动驾驶难题。
2、选择了准备期长的道路,就选择了早期的蛰伏
芯片的种类有很多,大到计算机CPU、GPU,小到各种控制单元,某种程度上,很多科技企业都一窝蜂宣称自己造芯,已经把“芯片”这个概念玩坏了。
有价值的芯片,一定存在着无法压缩的长时间周期 ,在鱼龙混杂的舆论场中,很多中小科技公司甚至巨头会拿一些芯片领域较为初级的产品来博取眼球。
阿里不能这么做,因为有很多“懂行”的眼睛在盯着;阿里也没有选择这么做,在媒体集中采访环节,达摩院透露含光800的研发周期超过两年。
对瞬息万变的互联网而言,两年的时间足够一个新风口起落、一个新赛道的站位,但既然要选择全长木板式的“AI完全体”打造,阿里只能选择这种准备期长但价值也更大的芯片道路。
在芯片之外的其他需要长期投入的领域,例如AI平台、AI引擎框架上都是如此,好在,商业光辉虽然掩盖了AI技术的光芒,但也提供了足够大的庇护所。 只不过,从舆论和大众认知角度,阿里的这些选择,会造成“舆论只有突然爆发没有平稳上升逐渐显露”的现象,蛰伏成了过去阿里AI的关键词。
3、选择“实用”而不是选择“讲故事”,就必须被迫接受价值与认知的错位
阿里AI在杭州城市大脑的